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The equations of the quasistationary approximation in the problem of the motion of an isolated volume of a viscous incompressible 
capillary liquid are derived from the exact equations using an expansion in a small quasistationary parameter, which is equal to 
the ratio of the Stokes time to the capillary time. The problem contains yet another dimensionless parameter, which is proportional 
to the modulus of the conserved angular momentum of the liquid volume, which is also assumed to be small. Depending on the 
relation between these parameters, three versions of the limiting problem are obtained: the traditional version and two new 
versions. Asymptotic solutions of the problems which arise when the quasistationary parameter tends to zero are constructed. 
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The quasistationary approximation is one of the most important approximate models in the theory of 
viscous flows with free boundaries. However, up to now, there has not been even a formal derivation 
of the equations of the quasistationary approximation from the full hydrodynamic equations. Moreover, 
plane motions have been studied in the overwhelming majority of papers in this field. In the three- 
dimensional problem, a local theorem for the existence of a solution has only recently been proved. 

1. FORMULATION OF THE PROBLEM 

The problem is formulated in the following way. It is required to find a domain ~"~t C ~.~3, t > 0 and 
a solution of the Navier-Stokes equations 

v t +v-Vv=-p- IVp+vAv,  V . v = 0  (1.1) 

in this domain when 0 < t < T such that the initial conditions 

the domain f~0 is specified, v(x, 0) = v0(x), x ~ D.0 (1.2) 

and the boundary conditions 

V n v n, x c F  t, t ~ ( O , T )  (1.3) 

- p n +  2p.D.n= 2oKn, x EF, t e(O,T) (1.4) 

are satisfied. Here v(x, t) is the velocity vector, p.(x, t) is the pressure of the liquid, x = (Xl, x2, x3) is a 
point in the three-dimensional Euclidean space ~t', ~ is the domain occupied by the liquid at the instant 
of time t, p is the density of the liquid, v is its kinetic coefficient of viscosity and cr is the surface tension 
coefficient, which are specified positive constants, Ft is the boundary of the domain ~t, n is the unit 
vector of an outward normal to the surface Ft, Vn is the rate of displacement of this surface in the 
direction of n, ~t = pv is the dynamic coefficient of viscosity of the liquid, D = [Vv + (Vv)*]/2 is the 
rate of deformation tensor and K is the mean curvature of the surface Ft and it is assumed that K < 0 
if the domain f~t is convex. 

The surface Ft on which condition (1.3) (the kinematic condition) and condition (1.4) (the dynamic 
condition) are satisfied is called the free boundary. The first of these conditions denotes that, at each 
point in the free surface, the rate of displacement of this surface in the direction of the outward normal 
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coincides with the normal component of the velocity of the liquid at the given point. If the surface Ft 
is defined by the equation F(x, t) = 0, the kinematic condition can be rewritten in the equivalent form: 
F1 + v. VF = 0 by virtue of the fact that F = 0 and the first of the initial conditions (1.2) can be rewritten 
in the form F(x, O) = Fo(x), where Fo(x) is a specified function. 

As a consequence of the dynamic condition (1.4), the shear stress in the free boundary is equal to 
zero and the normal stress is identical to the capillary pressure. In formulating (1.4), it has been assumed 
that the external atmospheric pressure is constant and that this constant has already been included in 
the function p. The first of Eqs (1.1) is written under the assumption that there are no external mass 
forces acting on the liquid. Moreover, it is henceforth assumed everywhere that the initial domain D.o 
is bounded. 

This enables one to interpret the solution of problem (1.1)-(1.4) as a solution which describes the 
inertial motion of a viscous drop. Such a motion possesses a number of integrals and the volume of 
the domain f~ 

is conserved in this motion 

] dx = V : I dx (1.5) 
£~t flO 

P Ivdx=l =p J vodx (1.6) 
fit ~0 

is the total momentum of the liquid and 

P S v x x d x = M = p  S VoXX~ (1.7) 
llz flO 

is the total angular momentum. 
Since the quantity V is available, a characteristic linear scale l = 1/'1/3 can be introduced. 
Equation (1.1) and conditions (1.3) and (1.4) are invariant under a Galilean transformation. This 

enables us to change to a new (inertial) system of coordinates in which the centre of mass of the drop 
is at rest. Hence, without loss in generality, it can be assumed that the quantity I in (1.6) is equal to 
zero, that is, the relation 

I ,,ax = o (1.8) 
fit 

is satisfied for all t ~ (0, 7). 
Problem (1.1), (1.3), (1.4) has a family of steady-state solutions. The equilibrium forms of a rotating 

capillary liquid correspond to these solutions: in the appropriate system of coordinates, which rotates 
with respect to the initial system at a constant angular velocity which is collinear with the vector M, the 
liquid is at rest. 

The above-mentioned forms of equilibrium and the issue of their branching and stability have been studied in 
many papers; the results can be found in the monographs [1, 2], where there is also a detailed bibliography on 
these issues. 

As far as the unsteady state problem (1.1)-(1.4) is concerned, the first results regarding its local solvability in 
an exact formulation have been obtained quite recently [3]. A theorem concerning the existence and uniqueness 
of its solution for all t > 0 was proved in [4] in the case when the initial domain D¢ is close to a sphere and the 
initial velocity field v0 is small (in the corresponding norm). The stabilization of the solution of a plane analysis of 
problem (1.1)-(1.4) to a state of quasirigid rotation when t --, oo has been studied in [5]. Finally, an analysis has 
been given of the extension of problem (1.1)-(1.4) to the ease when the liquid is subject to the force of self- 
gravitation. [6]. (In the formulation of the problem being considered, this factor is not taken into account, which 
is permissible in the case of sufficiently small values of l: see the discussion of this issue in [2]. It has been shown 
[6] that, if the vector function v0 is small and the domain D.0 is close to a sphere, the three-dimensional problem 
with a free boundary has a solution which is defined for all t > 0. The limiting state of the liquid when 
t --, oo corresponds to its rotation as a rigid body at a constant angular velocity. The axis of rotation coincides with 
the direction of the angular momentum M and the value of the limiting angular velocity, together with the limiting 
equilibrium shape of the liquid, is uniquely defined by the specification of the quantities V, M = I M I and the 
material constants p, t~ and x (the gravitational constant). The corresponding assertions for problem (1.1)-(1.4) 
are obtained from the results in [6] by taking the (regular) limit as × ~ 0. 

We note a further special case of the plane problem (1.1)-(1.4) in which it is possible to carry out a complete 
investigation of the qualitative behaviour of the solution without any constraints of the smallness type regarding 
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the initial data [7]. In this case, the plane domain D.0 is a ring and the initial velocity distribution possesses axial 
symmetry. During the motion, the property of rotational symmetry is preserved such that the domain f~t remains 
a ring, at least for sufficiently small t > 0. When t is increased further, depending on the initial data, either the 
internal radius of the ring remains strictly positive and the motion then stabilizes to the rotation of the ring as a 
rigid body or, at a certain instant t*, this radius vanishes, that is, the ring is transformed into a circle. It is shown 
in [7] that, if such a transformation has occurred, it is of an irreversible nature: when t > t*, the domain Ot remains 
a circle. When t ~ oo, the motion tends to the quasirigid rotation of a circle. We shall return to the problem of a 
rotating ring at the end of this paper. 

2. R E P L A C E M E N T  OF THE R E Q U I R E D  F U N C T I O N S  

It is further assumed that the angular momentum vector M, which is conserved in the solution 
of problem (1.1)-(1.4), is parallel to the x3 axis, that is, M -- (0, 0, M). This can always be achieved 
by the choice of axes of the initial (inertial) system of coordinates. Furthermore, it is possible, 
without loss in generality, to choose the origin of coordinates in the xl, xz plane such that the 
inequalities 

.[ xIdX = J x2dx = 0 (2.1) 
~0 ~0 

are satisfied. 
In relation (1.1)-(1.4), we now change to the new required functions 

w=v-co( t )h(x) ,  q=  p-p¢o 2 lhl 2 12 (2.2) 

where h(x) = (-x2, Xl, 0). (A similar change of variables was used previously in [5].) The function o)(t) 
is chosen from the condition 

I w. hdx = 0 (2.3) 
~t 

As a consequence of (1.7), (2.2) and (2.3), we obtain 

oa(t) = Ml(plt) (I t = n, ~ r2d'x' (2.4) 

An expression will later be needed for dto/dt. It is obtained from (2.4) using the solenoidal property 
of the vector v, conditions (1.3) in the boundary of the moving volume ~ and the identity h .  V(r ~) = 0, 
and has the form 

d(o p_~t2 d w.V(r2)d x 
dt 

Substituting (2.2) into (1.1) we obtain the following equations for the functions w and q 

w t + w. Vw + ¢o'h + (oh. Vw + 20.~e 3 × w = -p - lVq  + yaw 

V - w = 0 ,  x ~ t ,  t~(O,T) 

(2.5) 

(2.6) 

where the notation co' = dco/dt is used. The functions o(t) and co' in (2.6) are defined by equalities (2.4) 
and (2.5). By putting t = 0 in the first of them, it is possible to calculate the value of o(0) = o0, since 
the domain ~ is assumed to be specified. 

At a consequence of (1.2) and (2.2), the initial condition for the function w has the form 

w ( x , 0 )  = Wo(X ) - Vo(X)-O~oh(x), x e £~o (2.7) 

The kinematic condition on the free boundary (1.3) becomes 

Vn=(w+o~h).n, x e F t ,  t e (0 ,T)  (2.8) 

Finally, dynamic condition (1.4) in terms of the functions w and q can be written as 
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-q n  + 21xD. n = (pt.o2r 2 / 2 + 2t~K)n, x e F t, t e (0, T) (2.9) 

Here, account has been taken of the fact that the term o~(t)h(x) makes no contribution to the rate of 
deformation tensor and, hence, D(v) = D(w). 

We will now explain the meaning of the change to the new required functions in problem (1.1)-(1.4). 
As a consequence of equalities (1.7), (2.2) and (2.3) and the stipulation that the vectors M and e3 are 
collinear for any t e (0, 73, the relation 

S w x xdx = 0 (2.10) 
fl  t 

which expresses the law of conservation of angular momentum in terms of the function w, will be satisfied. 
Moreover, this vector function satisfies the condition for the conservation of momentum 

I wdx=O (2.11) 
~ t  

Relations (2.10) and (2.11) play a key role in the subsequent constructions. 
We will now prove the validity of Eq. (2.11). Using Euler's formula to calculate the time-derivative 

of the integral over the liquid volume and using equality (1.8), we obtain 

d d h d x =  d d t  , v'hdx = fit~ (U2el -Ule2)dx = 0 

It follows from this and from (2.1) that 

I h d x =  I hdx=O 
t'lt ~ o  

The last equality, together with (1.8) and (2.2), gives the required relation (2.11). 

3. S I M I L A R I T Y  C R I T E R I A .  T H E  C H A N G E  
TO D I M E N S I O N L E S S  V A R I A B L E S  

The material constants p, o and l.t = pv and the quantities V = 13 and M = I M I which are conserved 
during the motion are the governing parameters in problem (1.1)-(1.4). Two independent dimension- 
less combinations 

= pt~l/~t 2, e = M/(l.tl 3) 

which are the similarity criteria in the problem of the motion of a rotating mass of a viscous capillary 
liquid, can be constructed from these parameters. The parameter e characterizes the order of the ratio 
of the centrifugal forces to the viscous forces. The parameter 8 is conveniently interpreted as the ratio 
of two characteristic times: ts = 12/v (we call it the Stokes time) and tc = ~/cr, the capillary time). The 
quantity ts characterizes the time for the relaxation of the viscous stresses in the liquid volume Or. The 
meaning of the quantity tc can be understood by turning to condition (1.4). It follows from this condition 
that the characteristic velocity of the motion generated by capillary forces is of the order Oc = ~/rt. It 
is natural to define the capillary time as l/uc = la/Cr, where the characteristic linear dimension l = V 1/3 
is prescribed by specifying the volume of the drop. The same condition (1.4) enables us to define the 
pressure scale in the problem in question as Pc = cr/l. 

The quasistationary approximation in the problem of the motion of a viscous drop is based on the 
assumption that the deformation of the free surface by surface tension forces occurs much more slowly 
than the relaxation of the elastic stresses to the stationary state, which is determined by the instantaneous 
form of the free boundary F t o n  which the capillary pressure 2oK is distributed, and that there are no 
shear stresses. It follows from this that tc = ~ / c  is the natural time scale in this approximation and that 
tc "> ts = 12/v so that the parameter 8 = ts/tc is small. 

We now change to dimensionless variables in relations (2.6)-(2.9) by choosing l as the scale of 
length, t~ = la//~ as the time scale, Oc = c/~t as the velocity scale andpc = o/l as the pressure scale, while 
retaining the previous notation for the dimensionless quantities. In the new terms, Eqs (2.6) take the 
form 
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8(wt + w . V w ) + E [ - l h  f w'V(r2)dx+¼(h'Vw+2e3×w)]=-Vq+Aw (3.1) 

V . w = 0 ;  xcf~ t, t¢(O,T) 

(Expressions (2.4) and (2.5) for the functions co and co' have been used in obtaining (3.1) from (2.6).) 
The expression on the left-hand side of the first equation of (3.1) is the (dimensionless) total accelera- 

tion of the inertial forces. In the quasistationary approximation model, this acceleration is assumed to 
be negligibly small compared with the acceleration due to the viscous interaction forces, which justifies 
the replacement of the left-hand side of the equation for the momenta (3.1) by zero. It is clear that, 
for this to be so, it is sufficient that the parameter 8 should be small; it follows that one assumes that 
the parameter e is also small. Moreover, the vector v0(x), occurring in the initial condition (1.2), must 
be of the order of Oc = o/~t. Otherwise (that is, when maxl v0(x) I ~> oc) inertial forces will predominate 
over the viscous forces from the very beginning and the description of the motion of a drop in the 
quasistationary approximation loses any meaning. On taking account of what has been said and using 
formula (2.4) to determine co 0, we obtain the dimensionless form of the initial condition (2.7) 

~(x)  (io = f r Z ~ )  (3.2) w(x,O)=wo(x)-vo(x)- ~o .: 

in the domain D.0, which is assumed to be known. 
The kinematic condition on the free boundary (2.8) becomes 

V n = ( w + ~ / t x ) l . ~  xcF,, t¢(O,T) (3.3) 

and the dynamic condition (2.9) becomes 

F ~2r2 ] -q.+=o . - ? r  . , .  o,0 , (3.4) 

Relations (3.1)-(3.4) form the problem with an unknown boundary which will be the subject of our 
subsequent investigation. The existence of the conservation laws (2.10) and (2.11) and 

I dx =1 (3.5) 
t ' l  t 

is an important property of this problem (the latter equality follows from (1.15)). 

4. OUTER EXPANSION. THE EQUATIONS OF THE 
QUASISTATIONARY APPROXIMATION 

The traditional scheme for the quasistationary approximation involves replacing problem (3.1), (3.2) 
by the following problem: it is required to find a domain fit C ~3, 0 < t < T and a solution w, q of the 
steady-state Stokes system 

Aw-Vq = 0, V - w = 0  (4.1) 

in this domain such that the condition 

-qn+2D.n=2Kn, xcFt=~f~t, t¢(0,T) (4.2) 

(which plays the role of a boundary condition for system (4.1), in which the time enters as a parameter), 
and the condition 

Vn=w'n, xcF  t, tE(O,T) (4.3) 

which determines the evolution of the free surface Ft from its initial position F0, are satisfied. In the 
case of a known Ft, the solution of the boundary-value problem (4.1), (4.2) is found uniquely if the vector 
function w is subject to the additional conditions (2.10) and (2.11). 
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A non-linear non-local operator is thereby defined which matches the surface Ft with the function 
wit • n (or the function F(x, t) specifying the equation of this surface with the equality F = 0), after 
which relation (4.3) is transformed into an evolutionary equation in the function F for which the Cauchy 
problem F(x, O) = Fo(x) has to be solved, where the equality Fo(x) = 0 is the equation of the surface 
F0. 

The basic result of an investigation of problem (4.1)-(4.3), which was carried out previously in [3], 
can be formulated in the following way. Suppose F0 is a bounded surface in ~3 which is stellar with respect 
to the origin of coordinates. We assume that the function ~, which is defined on the unit sphere S 2 and 
which maps it on to the surface F0, belongs to the Sobolev space H6($2). Then, a T = T(F0) > 0 exists 
such that, when t e (0, T), problem (4.1)--(4.3), (2.10), (2.11) has a solution, and, furthermore, it is unique. 
Moreover, if the surface F0 (in the appropriate metric) is close to a sphere, a solution of the above- 
mentioned problem exists for all t > 0. In this case, w ---> 0, q ~ const when t ~ oo, and the surface F t 

stabilizes to a sphere as t increases. (We are not concerned here with the plane analogue of problem 
(4.1)--(4.3) which has been studied elsewhere; see, for example, [8-12] and the literature cited in them.) 

We now return to the initial problem (3.1)-(3.4). It contains two parameters, 8 and e which are 
henceforth assumed to be small. The equations of the quasistationary approximation are formally 
obtained from relations (3.1)-(3.4), if terms explicitly containing the parameters 6 and ~ are dropped 
from (3.1), (3.3) and (3.4) and, at the same time, initial condition (3.2) for w is discarded (the second 
initial condition specifying the surface F0 is, of course, retained here). The plausible supposition (which, 
a~/vParently, has not been precisely formulated previously), that, for small 8, at times t >> ts, where ts = 

is the Stokes time, the details of the initial velocity distribution are "forgotten" and the evolution 
of the free boundary, in the first approximation with respect to the parameter 8 is solely determined 
by its initial form, is the basis for this procedure. 

It should be noted that, unlike the parameter 8, which depends solely on the properties of the liquid 
and the specified volume V = l 3 of the domain Do, the parameter ~ contains the quantity M = [ M [ 
which characterizes the intensity of rotation of the liquid. The value of M (as well as V) is conserved 
during the motion, and there are therefore no grounds for supposing that this integral characteristic 
of the initial velocity field will not have an effect on the behaviour of the solution of problem (3.1)-(3.4) 
at large t, even if the parameter ~ is small. In order that such an effect should be unimportant, it is 
necessary to assume that e = 0(6) when 8 ---> 0. (Physically, this means that the instantaneous angular 
velocity, defined using formula (2.4), of the quasirigid rotation of a liquid which occupies a volume f2t 
and has an angular momentum M, is negligibly small compared with the characteristic values of the 
elements of the rate of deformation tensor D(w).) In this (and only in this) case, a formal passage to 
the limit 8 ---> 0, e ~ 0 is possible in relations (3.1), (3.3) and (3.4), which leads to the standard model 
of the quasistationary approximation (4.1)-(4.3). If the condition ~ = o(8), when 8 ---> 0, is not satisfied, 
the model is in need of modification. 

Below, we consider two interesting cases: e = 138 and e = ~/81/e (13 and ~/are positive constants), which 
lead to new formulations in the theory of the quasistationary approximation. The first case is investigated 
in this section and the treatment of the second case with an additional assumption concerning the 
rotational symmetry of the motion is dealt with in Section 6. 

Thus, suppose e = 136 and 8 ---> 0. The external expansion of the solution of problem (3.1)-(3.4) with 
respect to the parameter 8 is sought in the form of the formal power series 

w ~- W (0) "l"~W (I) -I- ~2 W (2) ..1-..., q = q(O) +~Sq(~) + 8 2 q ( 2 )  + ... (4.4) 

The leading term of the expansion w (°), q(0) is determined in the following manner. The boundary-value 
problem 3.1)-(3.4), in the conditions of which we put e = [38, is solved in the domain f~0) (which is also 
to be determined) and we take the limit as 8 ~ 0. Actually, the functions w (°), q(0) form the solution of 
the second boundary-value problem (4.2) which has already arisen in the case of the Stokes system (4.1). 
However, the closing condition (4.3) is now replaced by the condition 

V(°) = ( w(O> +/t'-~-)'l~h(x)) n(O) 

x ~ r, (°~ = a ~  °), t G (0, r) It0, __ 

which follows from (3.3) under the assumption that e = 138. 

(4.5) 
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Problem (4.1), (4.2), (4.5), (2.10), (2.11) is a generalization of the classical problem in the theory of 
the quasistationary approximation (4.1)-(4.3), (2.10), (2.11) and converts into it when 13 = 0. It is further 
assumed that this problem (subject to the condition that the initial surface F0 is sufficiently smooth) 
has a classical solution which, moreover, is unique. This assumption can be substantiated, in every case, 
if the surface F0 is a stellar surface. 

Omitting the technical details, we will now explain the essence of this paper. We introduce the spherical 
coordinates s = Ix I, 0 (the latitude) and ~0 (the longitude). We assume that the polar axis coincides with the axis 
x3 and write the equation of the surface F0 in the form s = R0(0, ~0). The stellar nature of the initial surface 
F0 guarantees this same property of the free boundary FI, at least for sufficiently small t > 0. Suppose the inequality 
s = R(0, ~o, t) specifies the equation of the surface Ft in spherical coordinates. By the technique in [8], 
problem (4.1), (4.2), (4.5), (2.10), (2.11) can be reduced to a non-linear non-local Cauchy problem for the function 
Q = R-Ro  

~Qfdt=N(Q), O<t<T; Q=O, triO (4.6) 

Here N(Q) is an operator that, for a fixed t, acts from a certain sphere with its centre at the zero of the Sobolev 
space/./~$2) into the space H5($2), is Frechet differentiable (and, what is more, analytically) at the point Q = 0 
and depends smoothly on t as on a parameter. 

The structure of the Frechet differential N'(0) of the operator N(Q) at the point Q = 0 plays a decisive role in 
the analysis of Cauchy problem (4.6). The linear operator N'(0) allows of the representation 

N'(O)ffiL+M! +M 2 

where L is a first-order elliptic pseudodifferential operator and its leading term is a composition of the Laplace- 
Beltrami operator Ar on the surface F0 and the Neumann-Dirichlet operator A for the Stokes system. The latter 
operator sets the function A(g) = w, in correspondence with the function g, defined on the surface F0, where w, 
is the normal component of the vector w on the surface F0, and this vector function, together with the scalar function 
q, forms the solution of the Stokes system (4.1) in the domain f~o which is subject to conditions (2.10), (2.11) and 
(4.2), where the right-hand side of the last equation is replaced by gn. 

By virtue of the stellar nature of F0, each function g specified on this surface can be parametrized by the angular 
variables 0 and tp. This enables us to express the action of the operators M1 and M2 in the following explicit form 

I-2xx s -]-I 3g 

['2zx 5 3 "1-2 2 ~  
M2(g)=251~/I JP~(O, tp)sin OdOd~p/ I IR~(0,~)g(O, lp)sin30dOd~ 

L o o  _1 O 0  

Hence, the operator M1 is skew-symmetric and M2 is compact. Together with the elliptic property of the operator 
L, the above-mentioned properties guarantee the reciprocity of the operator 0/&- N'(0). The subsequent treatment 
of problem (4.6) is almost a repetition of the arguments in [8] and leads to the following result: for the condition 
R0 ~/-/6($2), a T > 0 exists such that problem (4.6) has a solution Q ~ Cw([0, 7];/-/6($2)) N C~([0, 7];/-/5($2)) and, 
moreover, it is unique. (The symbols Cw([0, T];X) and C~([0, 7], respectively denote the spaces of weakly continuous 
and weakly continuously differentiable functions of t e [0, 7] with values in a certain Banach space X.) 

5. I N N E R  EXPANSION.  THE M A T C H I N G  C O N D I T I O N S  

Generally speaking, the asymptotic solution (4.4) of problem (3.1), (3.3), (3.4) constructed above does 
not satisfy initial condition (3.2). In order to compensate for the discrepancy which occurs, it is necessary 
to seek a solution of the complete problem with a free boundary for the Navier-Stokes equations 
(3.1)-(3.4) in the form 

w = w (°) + W ~°) - u ~o) + ~ ( w  o )  + W O) - uO))  + ... 
(5.1) 

q = qtO~ + Q(0~_ sto~ + ~(qO) + Qo) _ sO~) + ... 

where the functions W (k), Q(k), k = 0, 1 . . . .  (the elements of the inner expansion) depend onx and the 
fast time x = t/8 while the functions u (k), s (k) depend solely on x. The problem for finding W t°), Q(0) 

is obtained in the following way. Expressions (5.1) are substituted into system (3.1), in which a change 
is made to fast time and one them puts 6 = 0. Here, account is taken of the fact that the functions 
w(k), q(k) depend solely on x and t and that w ~°), q(0) is the solution of system (4.1). The result is a transient 
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Stokes system which the functions W (°), Q(0) satisfy 

W~ °) = - V Q  ¢°~ + &W °~, V.  W ¢°) = 0 (5.2) 

System (5.2) has to be solved in the semi-infinite cylinder x ~ f)-0, x > 0 with the initial condition 

W¢°)(x, 0) = Wo(x) = wo(x) - w~°)(x, 0) (5.3) 

where the function w0 is determined in (3.2), and the boundary condition 

-Q(°)no +2D(W(° ) )  • n o = 2Kon o, x ~ F o (5.4) 

(no is the unit vector of the outward normal to the surface F0, Ko is the mean curvature of this surface 
and D(W (°)) is the corresponding rate of deformation tensor). 

Problem (5.2)-(5.4) is the second boundary-value problem for the transient Stokes system in a fixed 
domain. Its solvability follows from results in [4] (we shall not refine the conditions for the smoothness 
of the surface F0 and the function W0 and assume, as previously, that this surface and function are such 
as to guarantee the necessary smoothness of the solution). The principal issue which is now of interest 
concerns the behaviour of the functions W (°), Q(O) when -r --> oo. 

The right-hand side in boundary condition (5.4) satisfies the "self-equilibration" conditions 

I Konoar0 = 0, I gon0 x xdr' o = 0 (5.5) 
r,, r,, 

which express the fact that the total force and the total moment applied to the volume of liquid D~ are 
zero. It follows from results in [13] that a steady-state solution of system (5.2) exists which satisfies 
condition (5.4). We now note that, as a consequence of (5.3) and equalities (2.10) and (2.11) when 
t = 0, to which the functions w0(x) and w(°)(x, 0) are subject, the analogous equalities are also satisfied 
in the case of the function W0 

J'Wodx=0, IW0 xxdx=O (5.6) 
f2o f~o 

It is well known [13] that the steady solution of problem (5.2), (5.4), (5.6) is unique. It is not difficult 
to see that this solution is identical to w(°)(x, 0), q(°)(x, O) (this follows from relations (4.1) and (4.2) 
taken at the instant of time t = 0). 

The energy estimate 

~w(O'(x,x)--w'O'(x,O)~L2,~o ) =O(e-~"'), x , o o  (5.7) 

holds for the solution of problem (5.2)-(5.4), (5.6), where ~.1 is the least positive eigenvalu¢ of the 
Stokes operator in the domain D.0 with a condition of the second kind on its boundary. (An 
estimate, which is similar to (5.7), also holds in stronger norms but we shall not go into this.) The 
equality 

lim w(°)(x,t) = lira W(°)(x,x) 
t-~O ~ - - ~  

is a consequence of (5.7). This common limit is also denoted by u(°)(x). Since an estimate which is 
analogous to (5.7) also holds for the function Q(°)(x, ~) - q(°)(x:, 0), by the same token the function s(°)(x) 
is defined as the common limit of the functions q(°)(x, t) and Q°)(x, x) when t -~ 0 and t ~ oo respectively. 
As a result, all the leading terms in expansions (5.1) are found to be well defined, and we obtain the 
asymptotic solution of problem (3.1)-(3.4) as 8 --> 0 in the form 

Was = wt0)[x(y, t)t] + W (°)(y, t 15)  - u(°) ( y ) ,  qa, = q(O)[x(y, t)t] + Q(o) (y, t / 5) - s(°) (y) (5.8) 

wherey ~ D.o, t ~ (0, T) and the correspondence of the pointsy and x ~ f~(0) is established by solving 
the Cauchy problem 

xt=w(°)(x,t)+~, to(O, T); x=y, t=O 
t 
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so that the set ofvariablesy = 0'1,Y2,Y3) represents an analogue of Lagrangian coordinates in the space 
~3. In this case, the domain t~ °) is determined in the course of the solution of problem (4.1), (4.2), 
(4.5), (2.10), (2.11). 

Note that a similar scheme for constructing an approximate solution of the problem with a free 
boundary in the case of the Navier--Stokes equations (in a simpler situation) was implemented in [14]). 

6. ROTATIONALLY SYMMETRIC MOTIONS 
2 2 1/2 We introduce the cylindrical coordinates r -- (xl + x2) , z = x3, 4) = arctg(x2/x0 in the space ~3 and 

denote the projections of the vector w onto the r, d~, z axes by u, t~, x, respectively. We assume that F0 
is a surface of revolution about the z axis and that the vector w, in condition (3.2), is independent of d~ 
and that the surface 1" t remains a surface of revolution. The representation h = (0, r, 0) holds in cylindrical 
coordinates. Hence, h.n = 0 in condition (3.3) and it simplifies to 

Vn=w'n, xEF t, tE(O,T) (6.1) 

It is assumed in this section that the small parameters e and 8 are related by the equation e = 781/2, 
where 7 = const > 0. 

In coordinate notation, Eqs (3.1) than take the form 

2 -qr + Au - 
8(U t -I- UU r "1- WU z ) -- 8 ~ "~t ~ ---- 

uu 2 2 

r J L I, #t a, J r 2 
(6.2) 

8(w, + uw,. + ww~ ) = -q~ + Aw 

u (~ 02 +1 0 + 0 2 ~  
u,+-+w,=0,r xEa,, ,E(O,r) t, = ;rr , rTr 0-7) 

It is noteworthy that, now, condition (3.4) does not explicitly contain the parameters 8 and e 

-qn+2D'n=12K+~lt2 y2r2 ~,  x ,F, ,  t , ( 0 , T )  (6.3) 

The parameter 7 = M(p(~17) -v2, which occurs here, is the only similarity criterion in problem (1.1)-(1.4) 
and is proportional to M and does not contain the viscosity. 

Equations (6.2) have the trivial solution u = u = w = 0, q = C = const. A certain equilibrium con- 
figuration of the rotating capillary drop corresponds to this solution (we recall that w is the deviation 
of the physical velocity from the velocity of the quasirigid rotation). The free-surface of such a configura- 
tion is denoted by F, and the domain bounded by it, is denoted by f~. We have Vn = 0 for the equilibrium 
surface F, that is, condition (6.1) is automatically satisfied, as are two of the three scalar relations which 
form condition (6.3). The equality 

2K+~12t 72r2 +C=O, x~F (6.4) 

which is actually the equation for determining F, is a non-trivial consequence of (6.3). 
Note that, in the case of fixed 7, the parameter C cannot be arbitrary, since relation (3.5) (in which 

it is necessary to replace f~i by f~ in the case of the equilibrium configuration) is satisfied in the 
dimensionless variables. Hence, Eqs (6.4) and (6.5) define a single parameter family of equilibrium 
axially-symmetric surfaces F with parameter 7. 

When 7 = 0, the surface F will be a sphere of radius (3/(4n)) 1/3. The asymptotic form 

holds for small 7. 
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It follows from results which have been previously described [1, 2] that, as ~, increases, the surface 
F begins to flatten out at the poles. When ), increases further, its mean curvature changes sign and, 
finally, at a certain 7. "-~ 2.381 [2], drop-like equilibrium shapes cease to exist. For ~: > ~,., only ring-like 
equilibrium shapes are possible. It has been shown in [2] that all such shapes are unstable to non-axially- 
symmetric perturbations while drop-like axially-symmetric equilibrium configurations of a rotating 
capillary drop are stable for sufficiently small values of ~:. 

We now return to the evolutionary problem with rotational symmetry. It involves determining the 
domain f)t, bounded by the surface of revolution Ft, and the solution of system (6.1) in this domain 
with boundary conditions (6.1) and (6.3) and the initial condition 

w = Wo(X), x E f2o (6.5) 

where the vector w0 is independent of qb and, for simplicity, we will assume that it is also independent 
of 8. By virtue of (3.2), this means that an, in other respects, arbitrary (but compatible with condition 
(2.10)) initial velocity distribution, which is independent of qb, is added to the intensive quasirigid initial 
rotation of the volume of liquid with an angular velocity of the order of 8 -1/2 when 8 --> 0. 

We assume that the surface revolution F0 is homeomorphic with a sphere and that the parameter 
(which is determined by the initial state of the liquid volume) exceeds the critical value ~,.. If the solution 
of problem (6.1)-(6.3) is determined under these conditions for all t > 0, during the evolution of the 
domain D.t, its topology changes, with the simply connected free surface being transformed into a doubly- 
connected surface. This follows from the fact that, as a consequence of the dissipation of kinetic energy 
in a motion with D(w) ~ O, only a state of quasirigid rotation at a constant angular velocity can be the 
limiting state of an isolated volume of liquid when t ---> ~ and, for ~, > ~:., all such states correspond to 
ring-like equilibrium configurations, rather than to drop-like equilibrium configurations. 

As far as we are aware, the change in the topology of a flow domain in problems of this kind has not 
been described analytically until now. It would be interesting to study it in the quasistationary 
approximation. We will now consider the formulation of this under conditions of rotational symmetry. 

It is required to find a surface of revolution Ft, t ~ (0, T) and a solution (u, o, w) = w, q of the steady- 
state Stokes system 

5 u hu--~-2-qr=0 ,  h v -  =0, Aw-qz=O, ur+--+Wz=O (6.6) 
F 

in a domain ~2 t bounded by this surface such that conditions (6.1), (6.3) and (2.10) are satisfied (condition 
(2.11) is automatically satisfied in the case of rotationally symmetric motions). 

The scheme for investigating this problem is completely analogous to that described in Section 4. 
The unique solvability of the second boundary-value problem (6.3) for system (6.6) for fixed t is 
guaranteed by condition (2.19) and the conditions for the self-equilibrating nature of the vector function 
on the right-hand side of (6.3), which are similar to (5.5) (in turn, these conditions follow from the 
Gauss--Ostrogradskii formula). A local theorem for the existence of a solution of Eq. (6.1), which 
describes the evolution of the free boundary, holds at least in the case of a stellar initial surface F0. 

The solution of problem (6.1), (6.4), (6.6), (2.10) determines the leading terms of the outer expansion 
0) of the solution of the complete problem (6.1)-(6.3), (6.5), (2.10) for which we retain the notation w ( , 

q(0). The leading terms of the inner expansion W (°), Q(O), which compensate for the discrepancy in 
the formulation ofw f°) in the initial condition (6.5), and the functions u (°) , s f°) are determined in precisely 
the same way as in Section 5. The asymptotic solution of the complete problem when 8 ---) 0 has the 
previous form (5.8) (with natural changes due to the symmetry of the motion). 

In a known sense, the rotationally symmetric problem is richer in content than the classical model 
of the quasistationary motion of an isolated volume of liquid and its modification, considered above. 
In the latter two cases, the limiting form of the free surface Ft when t ---> ~ can only be a sphere while, 
in the case of the solution of problem (6.1), (6.3), (6.6), (2.10), it is natural to expect stabilization of 
Ft as t increases to a non-trivial equilibrium configuration F which is defined, for fixed ~,, by relations 
(6.4) and (3.5) (with the stipulations which have been made above). Moreover, here it is possible to 
construct the following terms of the outer and inner expansions of the solution of the complete problem 
in half-integer powers of the parameter 8. However, such a construction is beyond the scope of this 
paper. 

The question of substantiating the asymptotic behaviour of the solution of problem (3.1)-(3.4), when 
8 ~ 0, in the form of (5.8) remains open, even in the case of motions with rotational symmetry. An 
exception is the plane analogue of problem (6.1)-(6.3), (6.5), (2.10) (the problem of a rotating ring, 
considered in [7]) where the question of proof has been positively answered. The closeness of the 
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approximate solution of the problem of a rotating ring, in the form (5.8), to the exact solution when 
8 ~ 0 can be proved. 

I wish to thank V. A. Solonnikov for numerous discussions which considerably influenced the contents 
of this paper. 
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